Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2304744

ABSTRACT

Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2'-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2'-deoxyribonucleoside and 6-chloro-2-fluoro-2'-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2'-deoxyadenosine, 2,6-dichloropurine-2'-deoxyribonucleoside, and 6-chloro-2-fluoro-2'-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.


Subject(s)
Nucleosides , Pentosyltransferases , Nucleosides/chemistry , Pentosyltransferases/metabolism , Enzymes, Immobilized/chemistry , Biocatalysis , Deoxyribonucleosides , Purine-Nucleoside Phosphorylase/metabolism
2.
PLoS One ; 16(9): e0257615, 2021.
Article in English | MEDLINE | ID: covidwho-1435618

ABSTRACT

The World Health Organization (WHO) calls for the development of a rapid, biomarker-based, non-sputum test capable of detecting all forms of tuberculosis (TB) at the point-of-care to enable immediate treatment initiation. Lipoarabinomannan (LAM) is the only WHO-endorsed TB biomarker that can be detected in urine, an easily collected sample matrix. For obtaining optimal sensitivity, we and others have shown that some form of sample pretreatment is necessary to remove background from patient urine samples. A number of systems are paper-based often destined for resource limited settings. Our current work presents incorporation of one such sample pretreatment, proteinase K (ProK) immobilized on paper (IPK) and test its performance in comparison to standard proteinase K (SPK) treatment that involves addition and deactivation at high temperature prior to performing a capture ELISA. Herein, a simple and economical method was developed for using ProK immobilized strips to pretreat urine samples. Simplification and cost reduction of the proposed pretreatment strip were achieved by using Whatman no.1 paper and by minimizing the concentration of ProK (an expensive but necessary reagent) used to pretreat the clinical samples prior to ELISA. To test the applicability of IPK, capture ELISA was carried out on either LAM-spiked urine or the clinical samples after pretreatment with ProK at 400 µg/mL for 30 minutes at room temperature. The optimal conditions and stability of the IPK were tested and validation was performed on a set of 25 previously analyzed archived clinical urine samples with known TB and HIV status. The results of IPK and SPK treated samples were in agreement showing that the urine LAM test currently under development has the potential to reach adult and pediatric patients regardless of HIV status or site of infection, and to facilitate global TB control to improve assay performance and ultimately treatment outcomes.


Subject(s)
Biomarkers/urine , Endopeptidase K/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Tuberculosis/diagnosis , Endopeptidase K/chemistry , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Lipopolysaccharides/urine , Paper , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL